

- Your virtual notebook may be done in any way you choose, as long as you cover all of the material within this notebook.
- Every bit of information that you are required to take notes about is provided in my lessons (articles, slides, recordings). You will get 0 points if you choose to use other internet resources to fill this out.
- All lessons are provided with a link in the upper left hand corner of each slide (*with a big arrow and the link inside*).
- Do not screenshot or copy and paste any of my work in lessons or recordings and use it as your own unless you're specifically given permission to do so.
- Any work from AI (ChatGPT) or other answer-generating websites will result in an automatic zero and an Honor Code violation.

As you watch the video, **type in** the name of each group of numbers and **click & drag** the example(s) into each category from what you've learned from the video.

Rational

<u>3</u> 4

-2

Real Numbers

Just like Tokyo is part of Japan which is a subset of the world, natural numbers are a subset of whole number which are part of real numbers.

nerdstudy

$4\sqrt{2}$	R
$\sqrt{83}$	1
0.000365837409	.77
IRRATIONAL	rep
NUMBER	
$\sqrt{21}$	
-3π	.75
0.953	
$\sqrt{3}$	

RATIONAL			
NUMBER			
.77777777777			
repeating			
0			
9,873			
.75			
$\sqrt{25}$			
-34			
$\sqrt{64}$			
$-\frac{1}{3}$			
-4.532			
100.0			

W38 The Number System DRV	🗴 🖻 Derivita Assignment 🛛 🗙 🤘 M10.1 Rational & Irrational Nu 🗴 🛛 🚾 IXL - Classify rational and irrat 🗴 🛛 🌞 square ro	oot of 35 - Wolfran	n A ×	+	× -	. @	×
\leftrightarrow \rightarrow C \triangle homew	vork.derivita.com/lti/assignment/s/Y2fKuAZ0UkABc9Rb6TFy		< \$	🟫 📢	4		:
🛅 ORCA Bookmarks 🛛 💹 Desmo:	s Graphing 🗤 Metamorphoses 🔲 Sphinx is NUT - Go 🛄 Exponents Module 📕 Nut - Explore Deitie 🍞 Q-OSA 🔲 Out	line Indonesia	🛞 Task	& Purpose: Ho			»
5	Select the rational numbers. Select all that apply.	Question 1	100%				
	☑ 0.4375	Question 2	100%				
L. L	□ 0.12345	Question 3	100%				
ſ		Question 4	100%				
		Question 5	100%				
	☑ -3.2228	Question 6	100%				
Ĺ		Question 7	100%				
		Question 8	100%				
	□ 3.60555	Question 9	100%				
ſ		Question 10	100%				
		Question 11					
	□ 0.57557555755557	Question 12					
		Question 13					
		Question 14					
	Correct. Good Job! Score: 100%	Question 15	100%				
	The following values, in decimal form, either repeat or stop, thus making them rational numbers.	Summary					

🚱 💿 🥯 🧕 🕒 💿 🕄 🔮 🗊 🌵 🕲 US Jun 5 4:56 🛛 🗢 🔒

=1

Jun 5

4:22

0

There are no radicands that can be combined.

There are no radicals in the denominator of the fraction.

TO SIMPLIFY A RADICAL EXPRESSION $12x^2y^3z$ 1. Use prime factorization. Write radicand as product of prime factors. $2 \cdot 2 \cdot 3 \cdot x \cdot x \cdot y \cdot y \cdot y$ 2. Circle square pairs below here to match up with the st $2\,x\,y$ (n in the 3. Add square roots to coefficient recordina. 4. Write coefficient multiplied by $2xy\sqrt{3yz}$ remainder under radical

SIMPLIFYING RADICAL EXPRESSIONS

Simplest form: we simplify fractions, expressions, and now... radical expressions.

A radical expression is completely simplified if...

- There are no "square pairs" left under the radicand.
- There are no like radicands that can be combined. (we will get to that later,)
- There are no radicals in the denominator of a fraction (we will get to that later, too...)

Multiplication with Radicals

Product Property of Square Roots

Words The square root of a product equals the product of the square roots of the factors.

Numbers $\sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}$

Algebra
$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
, where $a, b \ge 0$

This means that you can do 2 things...

- 1. Multiply the radicands of any radical expressions.
- 2. Break one radicand into its factors under new radicals.

Coogle Slides

Multiplication with Radicals

How do you Press Esc to exit full screen act radicals?

- Just like any other math addition and subtraction: make sure they are the <u>same</u> before adding/subtracting. The same what? Radicand!
- Like radicands just means, what is under the radical sign is the same. Exactly the same. It's the same as saying "like terms" when we are talking about polynomials.
- What if they're not "like"? Can you flex your Algebra muscles to *make* them be like radicands by simplifying?
 Given life each term of the second secon
- 4. *Simplify* each term of the expression separately, then see what you can combine at the end!

$$-2\sqrt{3} + 3\sqrt{27}$$

When radicands are not the same, you will simplify to see if they are the same!

-2√3 is already simplified.

Simplify $3\sqrt{27}$ $\rightarrow \sqrt{(3\cdot 3\cdot 3)}$ $\rightarrow 3\cdot 3\sqrt{3}$ $\rightarrow 9\sqrt{3}$ Now they are *like radicands*! Combine! $-2\sqrt{3} + 9\sqrt{3}$ $7\sqrt{3}$, final simplified expression!

Why aren't radicals allowed in the denominator?	Fractions must have a rational denominator		
Explain why multiplying by a " <i>form of 1</i> " doesn't change the fraction.	Multiplying by an identity does not change the fraction		
<i>How</i> do you rationalize the denominator according to our lesson, or Mr. Khan's explanation?	Multiply numerator and denominator by the conjugate		
To rationalize, multiply by (type in the gray box) $\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$	To rationalize, multiply by (type in the gray box) $\frac{2}{5\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}$ $\frac{2}{3} - \sqrt{5}$ $3 - \sqrt{5}$		

Square Root Function

Definition:

Square root of the number is quantity which multiplied by itself yield the number

Graphs: $3 = \sqrt{9}$

Parent Function of Square Root Function

Click and drag image here

Graph:

Click and drag image here

Domain of a Square Root Function

Type here **Domain** the set of all x-values for which the function is defined. In other words,

Range of a Square Root Function

Type here **Range** set of all y-values for which the function is defined.

📔 05_31_23.mp4

🎬 05_31_23.mp4

🎬 05_31_23.mp4

🞬 05_31_23.mp4

A 11110005

н

To sum this all up... different variables change different parts of the graph!

Transformation	Variable	Examples
Horizontal Translation Graph shifts left or right.	, <i>h</i>	$g(x) = \sqrt{x-2}$ 2 units right $g(x) = \sqrt{x+3}$ 3 units left
Vertical Translation Graph shifts up or down.	k	$g(x) = \sqrt{x} + 7$ 7 units up $g(x) = \sqrt{x} - 1$ 1 unit down
Reflection Graph flips over x- or y-axis.	a & b	$g(x) = \sqrt{-x}$ in the y-axis $g(x) = -\sqrt{x}$ in the x-axis
Horizontal Stretch or Shrink Graph stretches away from or shrinks toward y-axis.	b	$g(x) = \sqrt{3x} \text{shrink by a factor of } \frac{1}{3}$ $g(x) = \sqrt{\frac{1}{2}x} \text{stretch by a factor of } 2$
Vertical Stretch or Shrink Graph stretches away from or shrinks toward <i>x</i> -axis.	a	$g(x) = 4\sqrt{x} \text{stretch by a factor of 4}$ $g(x) = \frac{1}{5}\sqrt{x} \text{shrink by a factor of } \frac{1}{5}$

with Kennedy

