- Your virtual notebook may be done in any way you choose, as long as you cover all of the material within this notebook.
- Every bit of information that you are required to take notes about is provided in my lessons (articles, slides, recordings). You will get 0 points if you choose to use other internet resources to fill this out.
- All lessons are provided with a link in the upper left hand corner of each slide (with a big arrow and the link inside).
- Do not screenshot or copy and paste any of my work in lessons or recordings and use it as your own unless you're specifically given permission to do so.
- Any work from AI (ChatGPT) or other answer-generating websites will result in an automatic zero and an Honor Code violation.

Real Numbers

Just like Tokyo is part of Japan which is a subset of the world, natural numbers are a subset of whole number which are part of real numbers.
nerdstudy

$4 \sqrt{2}$
$\sqrt{83}$
$0.000365837409 \ldots$
IRRATIONAL
NUMBER
$\sqrt{21}$
-3π
$0.953 \ldots$
$\sqrt{3}$

RATIONAL
NUMBER
$.7777777777 \ldots$
repeating
0
9,873
.75
$\sqrt{25}$
-34
$\sqrt{64}$
$-\frac{1}{3}$
-4.532

- \times
$\leftarrow \rightarrow$ C homework.derivita.com/lti/assignment/s/Y2fKuAZOUkABc9Rb6TFySphinx is NUT - Go...Exponents Module...Nut - Explore Deitie..Outline Indonesia

Select the rational numbers. Select all that apply.

0.12345...

$\square 3.60555 \ldots$
$\checkmark 0$$0.57557555755557 \ldots$

Correct. Good Job! Score: 100\%

The following values, in decimal form, either repeat or stop, thus making them rational numbers.

Question 1	100%
Question 2	100%
Question 3	100%
Question 4	100%
Question 5	100%
Question 6	100%
Question 7	100%
Question 8	100%
Question 9	100%
Question 10	100%
Question 11	
Question 12	
Question 13	
Question 14	
Question 15	100%
Summary	

\Rightarrow
Jun 5

RATIONAL NUMBER
a real number that can be written as a ratio of two integers (fraction), repeating or terminating decimal or an integer

NONTERMINATING
DECIMAL
a decimal that does NOT end and continues on forever

TERMINATING DECIMAL
a decimal that comes to an end

IRRATIONAL NUMBER
a real number that can be written as a NONREPEATING, NONTERMINATING decimal

NONREPEATING DECIMAL
a decimal which has no repeating pattern

Radical Expressions

Radical Expressions

STEPS FOR SIMPLIFING RADICAL EXPRESSIONS

When is a radical expression completely simplified?

- There are no "square pairs" left under the radicand.

There are no radicands that can be combined.

There are no radicals in the denominator of the fraction.

STEPS FOR SIMPLIFYING RADICAL EXPRESSIONS

1. Use prime factorization to write the radicand as a product of all prime factors (even the variables!)

$$
\sqrt{2 \cdot 2 \cdot 3 \cdot x \cdot x \cdot y \cdot y \cdot y \cdot z}
$$

2. Find 'hidden' squares (also called 'square pairs') and circle them in the radicand

SIMPLIFYING RADICAL EXPRESSIONS

Simplest form: we simplify fractions, expressions, and now... radical expressions.

A radical expression is completely simplified if...

- There are no "square pairs" left under the radicand.
- There are no like radicands that can be combined. (we will get to that later,)
- There are no radicals in the denominator of a fraction (we will get to that later, too...)

Multiplication with Radicals

Product Property of Square Roots

Words The square root of a product equals the product of the square roots of the factors.
Numbers $\sqrt{9 \cdot 5}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
Algebra $\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$, where $a, b \geq 0$

This means that you can do 2 things...

1. Multiply the radicands of any radical expressions.
2. Break one radicand into its factors under new radicals.

Division with Radicals
Quotient Property of Square Roots
Words The square root of a quotient equals the quotient of the square roots of the numerator and denominator.
Numbers $\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{\sqrt{4}}=\frac{\sqrt{3}}{2} \quad$ Algebra $\quad \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$, where $a \geq 0$ and $b>0$

This means that you can do 2 things...

1. Turn a division of two radicands into one radicand.
2. Break one radicand into its numerator and denominator under new radicands.

Multiplication with Radicals

EXAMPLE 1 Using the Product Property of Square Roots

a. $\sqrt{108}=\sqrt{36 \cdot 3}$

$$
\begin{aligned}
& =\sqrt{36} \cdot \sqrt{3} \\
& =6 \sqrt{3}
\end{aligned}
$$

b. $\sqrt{9 x^{3}}=\sqrt{9 \cdot x^{2} \cdot x}$

$$
=\sqrt{9} \cdot \sqrt{x^{2}} \cdot \sqrt{x}
$$

$$
=3 x \sqrt{x}
$$

Factor using the greatest perfect square factor.
Product Property of Square Roots
Simplify.
Factor using the greatest perfect square factor.
Product Property of Square Roots
Simplify.

How do you andestbiract radicals?

1. Just like any other math addition and subtraction: make sure they are the same before adding/subtracting. The same what? Radicand!
2. Like radicands just means, what is under the radical sign is the same. Exactly the same. It's the same as saying "like terms" when we are talking about polynomials.
3. What if they're not "like"? Can you flex your Algebra muscles to make them be like radicands by simplifying?
4. Simplify each term of the expression separately, then see what you can combine at the end!

$-2 \sqrt{3}+3 \sqrt{27}$

When radicands are not the same, you will simplify to see if they are the same!
$-2 \sqrt{ } 3$ is already simplified.
Simplify $3 \sqrt{ } 27$

$$
\rightarrow V(3 \cdot 3 \cdot 3)
$$

$\rightarrow 3 \cdot 3 \sqrt{ } 3$

$$
\rightarrow 9 \sqrt{ } 3
$$

Now they are like radicands! Combine!

$$
-2 \sqrt{ } 3+9 \sqrt{ } 3
$$

$7 \sqrt{ } 3$, final simplified expression!

Product Property of Square Roots	The product of square roots equals the square root of the product
Quotient Property of Square Roots	The quotient of square roots equals the quotient of the product

Why aren't radicals allowed in the denominator?

Explain why multiplying by a "form of 1 " doesn't change the fraction.

How do you rationalize the denominator according to our lesson, or Mr. Khan's explanation?

Fractions must have a rational denominator

Multiplying by an identity does not change the fraction

Multiply numerator and denominator by the conjugate

To rationalize, multiply by... (type in the gray box)

To rationalize, multiply by...
(type in the gray box)

Square Root

Function

Definition:

Square root of the number is quantity which multiplied by itself yield the number

Graphs: $3=\sqrt{ } 9$

Click and drag image here

Parent Function of Square Root Function

Click and drag image here
Type here

$$
y=\sqrt{x}
$$

Graph:

Click and drag image here

Domain of a Square Root Function

Type here Domain the set of all x-values for which the function is defined. In other words,

Range of a Square Root Function

Type here Range set of all y-values for which the function is defined.

V
曾

x	y	a^{2}	a^{b}
$($	$)$	$<$	$>$
$\|a\|$,	\leq	\geq
$A B C$	4)	$\sqrt{ }$	π

7	8	9	\div
4	5	6	\times
1	2	3	-
0	.	$=$	+

functions

$$
\begin{aligned}
& + \\
& \sqrt{+} \\
& y=\sqrt{5 x}+2
\end{aligned}
$$

x	y	a^{2}	a^{b}
$($	$)$	$<$	$>$
$\|a\|$,	\leq	\geq
ABC	4)	$\sqrt{ }$	π

7	8	9	\div
4	5	6	\times
1	2	3	-
0	-	$=$	+

functions
$\frac{\rightarrow}{\infty}$

$$
\sqrt{y}=\sqrt{x-4}+2
$$

Transformation	Variable	Examples	
Horizontal Translation Graph shifts left or right.	\cdots	$\begin{aligned} & g(x)=\sqrt{x-2} \\ & g(x)=\sqrt{x+3} \end{aligned}$	2 units right 3 units left
Vertical Translation Graph shifts up or down.	k	$\begin{aligned} & g(x)=\sqrt{x}+7 \\ & g(x)=\sqrt{x}-1 \end{aligned}$	7 units up 1 unit down
Reflection Graph flips over x - or y-axis.	$a \& b$	$\begin{aligned} & g(x)=\sqrt{-x} \\ & g(x)=-\sqrt{x} \end{aligned}$	in the y-axis in the x-axis
Horizontal Stretch or Shrink Graph stretches away from or shrinks toward y-axis.	b	$g(x)=\sqrt{3 x} \quad$ shrink by a factor of $\frac{1}{3}$ $g(x)=\sqrt{\frac{1}{2} x}$ stretch by a factor of 2	
Vertical Stretch or Shrink Graph stretches away from or shrinks toward x-axis.	a	$g(x)=4 \sqrt{x}$ stretch by a factor of 4 $g(x)=\frac{1}{5} \sqrt{x}$ shrink by a factor of $\frac{1}{5}$	

Uncontinevery

