

THE SITUATION

You have been tasked to purchase your company some new filing cabinets with a budget of \$140.

You have narrowed it down to two possible options and plan to buy a few of each.

- Cabinet X costs \$10 per unit, requires 6 square feet of floor space, and holds 8 cubic feet of files.
- Cabinet Y costs \$20 per unit, requires 8 square feet of floor space, and holds 12 cubic feet of files.

The office has room for no more than 72 square feet of cabinets.

COST OF CABINETS

Create an **inequality** in two variables representing your financial constraints (budget).

Y	# of cabinets, <i>x</i>	Total Cost of Cabinets	# of cabinets, y	Total Cost of Cabinets	
	x	10x	У	20y	
1	1	10	1	20	
	3	30	3	60	
	5	50	5	100	
	7	70	7	140	
	11	1100	11	2200	

AREA OF CABINETS

Create an **inequality** in two variables representing your area constraints (space).

Y	# of cabinets, <i>x</i>	Total area of cabinets		# of cabinets, y	Total area of cabinets		
	X	6x		У	8y		
	1	6		1	8		
	3	18	F	3	24		
	5	30		5	40		
	7	42		7	56		
	11	66		11	88	VI ~~	

Cost Linear Inequality (from #3)

Show work here.

X: number of \$10 cabinets Y: number of \$20 cabinets Maximum budget: \$140

> $10x + 20y \le 140$ $20y \le 140 - 10x$ $y \le 70 - 0.5x$ $y \le -0.5x + 70$

Area Linear Inequality (from #6)

Show work here.

X: number of 6 ft² cabinets Y: number of 8 ft² cabinets Maximum floor space: 72 ft²

 $6x + 8y \le 72$

Storage volume V

X: number of 8 ft³ cabinets Y: number of 12 ft³ cabinets

8x + 12y = v

Cost Linear Inequality (from #3) Show work here.

> X: number of \$10 cabinets Y: number of \$20 cabinets Maximum budget: \$140

> > $10x + 20y \le 140$ $20y \le 140 - 10x$ $y \le 7 - 0.5x$ $y \le -0.5x + 7$

Area Linear Inequality (from #6)

Show work here.

X: number of 6 ft^2 cabinets Y: number of 8 ft^2 cabinets Maximum floor space: 72 ft^2

$$6x + 8y \le 72$$

 $8y \le 72 - 6x$
 $y \le 9 - (6/8)x$
 $y \le 9 - (3/4)x$

y ≤ -0.75 x **+ 9**

C

Combination of cabinets fits budget <u>and</u> space

5 X Cabinets + 2 Y Cabinets

 $10x + 20y \le 140$ $10(5) + 20(2) \le 140?$ $50 + 40 \le 140?$ $90 \le 140$ **TRUE** Meets \$140 Budget

 $6x + 8y \le 72$. Let x=5, y=2 $6(5) + 8(2) \le 72?$ 30 + 16 ≤ 72? 46 ≤ 72 **TRUE** Meets 72 ft² space limit

X ets + Cabinets + Y Cabinets nets

10 X

Cabinets +

2 Y

Cabinets

4 X

4 Y

Combination of cabinets doesn't fit budget and space

> $10x + 20y \le 140$ $10(10) + 20(2) \le 140?$ $100 + 40 \leq 140?$ 140 ≤ 140 **TRUE** Meets \$140 Budget $6x + 8y \le 72$. Let x=10, y=2

 $6(10) + 8(2) \le 72?$ $60 + 16 \leq 72?$ 76 ≤ 72 **FALSE** FAILS 72 ft² space limit

≡	Office Cabinet Storage Vol 🔻 Save	2	desmos	Austin 👻 🔁 🕄 🕄
+	r a	\$ «	nets	F
	$10x + 20y \le 140$	×	3 12-ft ³ cabine	ets +
2	Maximum budget \$140. Small 8 cubic foot cabinet cost \$10	X Large	8 8-ft ³ cabine	:S A
2	12 cubic foot cabinet cost \$20		BIG	GEST total
0	$6x + 8y \le 72$	×		UME 100 ft ³
4 66	Maximum floor space is 72 square feet	×	35	
5	8x + 12y = v	×		
6	v = 100	×		
11	0 ·	200		
7	Total storage volume v in cubic feet	×	3	
•	(10,2)	×		
	Cabel: On budget, fails space limit			
0	(5,2)	×		
_	✓ Label: budget & space OK		2.5	
				number of small \$10 cabinets

HONORS ONLY SLIDE

Great news! Your boss approved more square footage and more money to get cabinets!

If you buy 16 X cabinets and 2 Y cabinets, 18 X cabinets and 1 Y cabinet, or 20 X cabinets and 0 Y cabinets, you will have maxed out your budget, exactly.

If you buy 12 X cabinets and 5 Y cabinets, 16 X cabinets and 2 Y cabinets, or 0 X cabinets and 14 Y cabinets, you will have maxed out your area, exactly.

Create a new page on your Jamboard (or use paper & pencil) to **show all algebraic work** to find the new area constraint and the new budget constraint.

Hint 1: "maxed out exactly" mean these combinations lie on the boundary line of your inequality's graph.

Hint 2: Notice that when our original inequalities are in standard form, we see the area and budget constraints as the constant.