MODULE 6 PROJECT BUYING OFFICE FURNITURE
Using a System of Linear Inequalities

THE SITUATION

You have been tasked to purchase your company some new filing cabinets with a budget of $\$ 140$.

You have narrowed it down to two possible options and plan to buy a few of each.

- Cabinet X costs $\$ 10$ per unit, requires 6 square feet of floor space, and holds 8 cubic feet of files.
- Cabinet Y costs $\$ 20$ per unit, requires 8 square feet of floor space, and holds 12 cubic feet of files.

The office has room for no more than 72 square feet of cabinets.

COST OF CABINETS

Create an inequality in two variables representing your financial constraints (budget).

AREA OF CABINETS

Create an inequality in two variables representing your area constraints (space).

Cost Linear Inequality (from \#3)

X: number of $\$ 10$ cabinets
Y: number of \$20 cabinets Maximum budget: \$140

$$
\begin{gathered}
10 x+20 y \leq 140 \\
20 y \leq 140-10 x \\
y \leq 70-0.5 x \\
y \leq-0.5 x+70
\end{gathered}
$$

X : number of $6 \mathrm{ft}^{2}$ cabinets Y : number of $8 \mathrm{ft}^{2}$ cabinets Maximum floor space: $72 \mathrm{ft}^{2}$

$$
6 x+8 y \leq 72
$$

Storage volume V

X : number of $8 \mathrm{ft}^{3}$ cabinets Y : number of $12 \mathrm{ft}^{3}$ cabinets

$$
8 x+12 y=v
$$

Cost Linear Inequality (from \#3)

X: number of $\$ 10$ cabinets
Y: number of $\$ 20$ cabinets Maximum budget: \$140

$$
\begin{gathered}
10 x+20 y \leq 140 \\
20 y \leq 140-10 x \\
y \leq 7-0.5 x \\
y \leq-0.5 x+7
\end{gathered}
$$

Area Linear Inequality (from \#6)

Show work here.
X : number of $6 \mathrm{ft}^{2}$ cabinets Y : number of $8 \mathrm{ft}^{2}$ cabinets Maximum floor space: $72 \mathrm{ft}^{2}$
$6 x+8 y \leq 72$
$8 y \leq 72-6 x$
$y \leq 9-(6 / 8) x$
$y \leq 9-(3 / 4) x$
$y \leq-0.75 x+9$

+
$10 x+20 y \leq 140$

Combination of cabinets fits budget and space

5 X
Cabinets + $2 Y$
Cabinets
$10 x+20 y \leq 140$ $10(5)+20(2) \leq 140$? $50+40 \leq 140$? $90 \leq 140$ TRUE Meets $\$ 140$ Budget

Combination of cabinets doesn't fit budget and space

$$
\begin{gathered}
10 x+20 y \leq 140 \\
10(10)+20(2) \leq 140 ? \\
100+40 \leq 140 ? \\
140 \leq 140 \text { TRUE } \\
\text { Meets } \$ 140 \text { Budget }
\end{gathered}
$$

$$
6 x+8 y \leq 72 \text {. Let } x=10, y=2
$$

$$
6(10)+8(2) \leq 72 ?
$$

$$
60+16 \leq 72 ?
$$

$$
76 \leq 72 \text { FALSE }
$$

FAILS $72 \mathbf{~ f t}^{2}$ space limit

HONORS ONLY SLIDE

Great news! Your boss approved more square footage and more money to get cabinets!

If you buy 16 X cabinets and 2 Y cabinets, 18 X cabinets and 1 Y cabinet, or 20 X cabinets and 0 Y cabinets, you will have maxed out your budget, exactly.

If you buy 12 X cabinets and 5 Y cabinets, 16 X cabinets and 2 Y cabinets, or 0 X cabinets and 14 Y cabinets, you will have maxed out your area, exactly.

Create a new page on your Jamboard (or use paper \& pencil) to show all algebraic work to find the new area constraint and the new budget constraint.

Hint 1: "maxed out exactly" mean these combinations lie on the boundary line of your inequality's graph.
Hint 2: Notice that when our original inequalities are in standard form, we see the area and budget constraints as the constant.

