Austin Horner

Mr Jones
Computer Science
2023-9-16

Lesson 3 Notes: Procedural and Object-Oriented

Week 2: 9/11-9/15
Completing Unit 1 and Starting Unit 2: The Big Programming Picture

Learning targets

e | will understand the concept of a program.

e | will explain how information is stored in a computer’s memory.
| will describe the process by which programs are translated to machine
language.

e | will comprehend the purpose of programming languages and give some
examples.

e | will distinguish between procedural and object-oriented programming.

Paradigm shift
something happens that completely blows your mind and gets you to look at
something from a completely different perspective. programming paradigms.

procedural programming.
tells the machine what to do in order, step by step.

subprograms
take care of specific tasks. These subprograms do their work and return to the main
program, keeping things tidy and making it easier for multiple programmers to work on
a program at the same time.

object-oriented programming (OOP)
came into existence in the 1950s and 60s at Massachusetts Institute of Technology.

1. Objects and methods
object
collection of data about an item, such as a ball, or the beach
properties
data about an object is called its properties.
ocean is blue and liquid.
methods



subtasks we mentioned regarding procedural programming.

functions
sequence of statements, or the functions, “belong” to the object.
ocean probably has a “tide” method, that can make the changes to be
high or low tide, depending on the time of day.

2. Classes & Instances

class
-is a template that we can use for creating objects.

instance
-object is an instance of the class; it has been “instantiated.”
-Pacific Ocean object, the Atlantic Ocean object, and the Indian Ocean object.
-in the ocean class, but each with their own slightly different properties and
methods
-Changes made to one object will not affect other objects

3. Inheritance
-class or object inherits all the properties and behaviors of another class or
object.
-Inheritance is an amazing tool for developers and perhaps one of the reasons
OORP is so popular!
-Programmers can build new classes or objects that are built upon previous work,
which lets them reuse existing code, saving time and money.

4: Overriding
-overriding is the opposite of inheritance.
-replace a specific method of a class with your object’s own unique version.
-ocean class defines a tide method that causes the shoreline to recede in the day and
expand at night, our object could do the exact opposite.

5: Encapsulation
-classes acting as a template from which we create objects.
- Another way, class is as a bundle full of all your favorite properties and methods.
-Once the bundle is all tied up, other people can’t see what’s inside, and they can only
reach the items that you place at the top of your bundle, near the opening.
-encapsulation is the ability to hide information within a class and only make certain
information accessible to the outside world.
-You control how much access other classes have to your class.
-Encapsulation results in simpler interactions between objects, allowing classes to
interact in a noncomplicated way.
-encourages writing code with advantage: it's reusable and easy to fix!



Polymorphism
Instead of separate code drawSquare() and drawCircle()
-In OOP, you could write one piece of code called draw()
-apply that code to a different object
-square.draw() , circle.draw() or triangle.draw() .
-The draw method is polymorphic, it can take many different forms.
-Polymorphism allows you to write simpler programs and it's a major strength of OOP.

No OOP in this class
Despite this discussion of OOP, we’re not actually going to be doing any object-oriented
programming in this course. You'll learn that down the line, of course, but for now we’ll
pick up the basics using that ever- lovable and straightforward paradigm that got
computer programming off the ground—procedural programming.



